Vector Form of a Plane

A plane \mathcal{P} is written in vector form if it is expressed as

$$
\vec{x}=t \vec{d}_{1}+s \vec{d}_{2}+\vec{p}
$$

for some vectors \vec{d}_{1} and \vec{d}_{2} and point \vec{p}. That is, $\mathcal{P}=\left\{\vec{x}: \vec{x}=t \vec{d}_{1}+s \vec{d}_{2}+\vec{p}\right.$ for some $\left.t, s \in \mathbb{R}\right\}$. The vectors \vec{d}_{1} and \vec{d}_{2} are called direction vectors for \mathcal{P}.

Recall the intersecting lines A and B given in vector form by

$$
\overbrace{\vec{x}=t\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]}^{A} \overbrace{\vec{x}=t\left[\begin{array}{r}
-1 \\
1 \\
1
\end{array}\right]+\left[\begin{array}{r}
-1 \\
1 \\
2
\end{array}\right]}^{B} .
$$

Let \mathcal{P} the plane that contains the lines A and B.
13.1 Find two direction vectors for \mathcal{P}.
13.2 Write \mathcal{P} in vector form.
13.3 Describe how vector form of a plane relates to linear combinations.
13.4 Write \mathcal{P} in vector form using different direction vectors and a different point.

Let $\mathcal{Q} \subseteq \mathbb{R}^{3}$ be a plane with equation $x+y+z=1$.
14.1 Find three points in \mathcal{Q}.
14.2 Find two direction vectors for \mathcal{Q}.
14.3 Write \mathcal{Q} in vector form.

